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This chapter introduces the concept of polarized light measurements in biological
tissues. Polarimetry has a long and successful history in various forms of clear me-
dia. However, as tissue is a complex random medium that causes multiple scattering
of light and thus extensive depolarization, a polarimetric approach for tissue charac-
terization may at first seem surprising. Nevertheless, we and others have shown that
multiple scattering does not fully depolarize the light, and reliable measurements and
analyzes of surviving polarized light fractions can be made in some situations. As
polarized light interacts with optically-active molecules such as glucose in charac-
teristic ways, the possibility arises of measuring a glucose polarization signal in light
multiply scattered by tissue. We therefore describe the variety of experimental and
theoretical tools, illustrated with selected results, aimed at evaluating the prospect of
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noninvasive glucose detection via turbid polarimetry.

17.1 Introduction

Non-invasive glucose monitoring in diabetic patients remains one of the most im-
portant unsolved problems in modern medicine. The problem is indeed getting more
acute, as the incidence of type II diabetes continues to grow at an alarming rate. Tight
regulation of glucose levels is needed to avoid long-term health complications, thus
the crucial need exists to measure these levels in order to regulate insulin and caloric
intakes, exercise regiments, and so forth. Unfortunately, the most reliable current
method necessitates the drawing of blood, usually by a finger prick. Because of the
inconvenience, many diabetics do not comply with the required minimum of 5 times
a day determination regimen, and instead rely on their symptoms and experience to
guide caloric intake and insulin administration. Because of the tremendous clinical
importance of this problem and its huge commercial potential, a significant research
effort has been undertaken, and is ongoing, in finding a noninvasive replacement
for the finger-prick way for measuring blood glucose levels. Research and commer-
cial activities have been intense, and have included fully non-invasive, as well as
minimally invasive approaches (e.g., glucose-drawing patch, glucose-sensitive flu-
orescent tattoos, implantable sensors). A subset of actively investigated techniques
involves optical methods, as described in detail in the different chapters of the present
volume.

A common difficulty with the various proposed noninvasive techniques is the in-
direct, and often weak, relationship between the change in the measured signal and
the corresponding change in the absolute glucose levels. This results in a lack of
sensitivity (small signal changes) and, perhaps more importantly, a lack of speci-
ficity, in that many other glucose-unrelated factors can cause similar small signal
changes. This is referred to as the calibration problem, and various approaches to
its solution have been reviewed [1]. Optical polarimetry is particularly promising in
this respect [2, 3], in that its measurable polarization parameters (e.g., optical rota-
tion) can be directly related to the absolute glucose levels. Specifically, glucose is an
optically active (chiral) molecule that rotates the plane of linearly polarized light by
an amount proportional to its concentration and the optical pathlength. This propor-
tionality is described in Eq. (17.1), and has been verified numerous times inclear
media; in fact, one of earliest application of polarimetry relied on this relationship to
determine sugar concentration in industrial production processes [4]:

α = R(λ ,T) ·C · 〈L〉 (17.1)

In Eq. (17.1)α is the measured optical rotation,R is the (known) rotatory power
of the molecular species (e.g., glucose) at a particular light wavelengthλ and temper-
atureT, C is the concentration (of glucose) to be determined, and〈L〉 is the optical
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pathlength. This simple linear relationship is exploited for the glucose monitoring
problem in the only transparent tissue in the body, specifically the eye. Chapter 15
of this monograph describes the exciting research in developing a glucose sensor by
polarimetric measurements through the aqueous humor of the eye that can be related
to blood glucose levels, and outlines the remaining outstanding challenges of this
promising approach.

With the exception of transparent ocular tissues, however, the human body is
highly absorbing and scattering in the UV-IR range, and the validity of Eq. (17.1) is
questionable. Specifically, (i) light is highly depolarized upon tissue multiple scatter-
ing, so even initial detection of a polarization-preserved signal from which to attempt
glucose concentration extraction is a formidable challenge; (ii) the optical pathlength
〈L〉 in turbid media is a difficult quantity to define, quantify, and measure, and really
represents a statistical distribution metric of a variety of photon paths that depend
in a complex way on tissue optical properties and measurement geometry, (iii) other
optically active chiral species are present in tissue, thus contributing to the observed
optical rotation and hiding/confounding the specific glucose contribution, (iv) sev-
eral optical polarization effects occur in tissue simultaneously (e.g., optical rotation,
birefringence, absorption, depolarization), contributing to the resultant polarization
signals in a complex interrelated way and hindering their unique interpretation.

Despite these difficulties, we and others have recently shown that even in the pres-
ence of severe depolarization, measurable polarization signals can be reliably ob-
tained from highly scattering media such as biological tissue. We have demonstrated
surviving linear and circular polarization fractions of light scattered from optically
thick turbid media, and measured the resulting optical rotations of the linearly polar-
ized light [5 - 10]. A comprehensive polarization-sensitive Monte Carlo model has
complemented our experimental studies by helping with signal interpretation and
analysis, validation of novel approaches, quantification of variables of interest, and
guidance in experimental design optimization. Further, we have developed various
experimental and analytical methods to maximize polarization sensitivity, quantify
pathlength distributions of polarized and depolarized light in multiple scattering me-
dia, model the effect of several simultaneous optical effects that can mask the glucose
polarization signature, and examine the utility of spectroscopic methods to account
for the polarization effects of glucose-unrelated confounding species. In this chap-
ter, we summarize this (and related) research on turbid polarimetry, and discuss the
implication of this approach for the human glucose detection problem.

This chapter is organized as follows. In section 17.2, we describe the high-
sensitivity polarization modulation / synchronous detection experimental system ca-
pable of measuring small polarization signals in the presence of large depolarized
background of multiply scattered light. Both Stokes vectors and Mueller matrix
approaches are discussed. This is followed by the description of the corresponding
theoretical model in section 17.3, based on the forward Monte Carlo (MC) modeling,
with the flexibility to incorporate all the simultaneous optical effects; selected valida-
tion studies of both the MC model and the experimental methodology are presented.
Having established the ability to accurately measure and model turbid polarimetry
signals, we now turn to the complicated inverse problem of separating out the con-
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stituent contributions from simultaneous optical effects; thus, section 17.4 reviews
the polar decomposition studies aimed at quantifying individual contributions from
‘lumped’ Mueller matrix experimental results. Section 17.5 deals with the quantifi-
cation of the polarized pathlength / sampling volume effects in turbid media, and
examines the effects of experimental geometry. In section 17.6, we discuss the ini-
tial results of spectral chemometric studies, aimed at combining turbid polarimetry
data with diffuse reflectance data, in order to increase the glucose-related informa-
tion content and to (spectrally) filter out the confounding effects of other tissue con-
stituents. The chapter concludes with a discussion of the applicability of the turbid
polarimetry approach to the noninvasive glucose detection problem.

17.2 Polarimetry in turbid media: experimental platform for sen-
sitive polarization measurements in the presence of large de-
polarized noise

In order to perform accurate glucose concentration measurements in scattering
media such as biological tissues, a highly sensitive polarimetry system is required.
Multiple scattering leads to depolarization of light, creating a large depolarized source
of noise that hinders the detection of the small remaining information-carrying polar-
ization signal. One possible method to detect these small polarization signals is the
use of polarization modulation with synchronous lock-in-amplifier detection. Many
sensitive detection schemes are possible with this approach [5 - 12]. Some perform
polarization modulation on the light that interrogates the tissue sample; others mod-
ulate the light that has interacted with the sample, placing the polarization modulator
between the sample and the detector. The resultant signal, when analyzed in the
context of Mueller matrix/Stokes vector formalism (see below), can yield sample-
specific polarization properties that can then be linked to the quantities of interest
(as, for example, linking glucose concentration to the measured optical rotation, pro-
vided that some form of Eq. (17.1) applies in turbid media). By way of illustra-
tion, we describe below a particular experimental embodiment of the polarization
modulation/synchronous detection. This arrangement carries the advantage of be-
ing assumption-independent, in that no functional form of the sample polarization
effects is assumed [5]. This turns out to be quite important in complex media such
as tissues, since there are typically several polarization-altering effects occurring si-
multaneously. Thus, a unique and unambiguous tissue polarization description is
difficult, so an approach that does not requite assumptions on how tissue alters po-
larized light, but rather determines it directly, is preferred.

The described methodology can yield both Stokes vector of the light exiting the
sample and calculate its Mueller matrix. A Stokes vectorS is comprised of four el-
ements completely describing the polarization of a light beam,S= (IQUV)T . The
first elementI represent the overall intensity of the beam, the second elementQ rep-
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resents the amount linearly polarized light in the horizontal and vertical planes, the
third elementU represents the amount of linearly polarized light in the±45◦ planes,
and the final elementV represents the amount of circularly polarized light. The inter-
actions of polarized light with any optical element, including the tissue sample being
examined, are applied to the polarization of a light beam through multiplication of
the incident Stokes vector with a4× 4 Mueller matrixM . Given an input Stokes
vectorSi impinging on a polarization affecting element, the output Stokes vectorSo

is given asSo = MSi . Both the measured Stokes vector and calculated Mueller ma-
trix can be used to quantify the polarizing properties of the sample, including optical
rotation produced by optically active (chiral) molecules such as glucose.

A schematic of our current turbid polarimetry system is shown in Fig. 17.1 [5].
Unpolarized light is used to seed the system; the experimental results reported here
are for a 632.8 nm HeNe laser excitation. Spectroscopic excitation (possibly white-
light source with a monochromator) may be preferable in the future, as suggested
by the chemometric analysis of spectral polarimetry data (section 17.6). The light
first passes through a mechanical chopper operating at a frequencyfc ∼ 500 Hz;
this is used in conjunction with lock-in amplifier detection to accurately establish
the overall signal intensity levels, as described below. The input optics (a linear
polarizer with/without the quarter wave-plate) allow for complete control of the in-
put light polarization that interrogates the sample. The light that has interacted with
the sample is detected at a choosen direction as the detection optics can be rotated
around the sample. The detection optics begin with a removable quarter wave plate
oriented at−45◦ to the horizontal plane: when present, Stokes parametersQ andU
(linear polarization descriptors) are measured, and the Stokes parameterV (circular
polarization descriptor) when removed. Sample-scattered light then passes through a
photoelastic modulator (PEM), which is a linearly birefringent resonant device oper-
ating at fp = 50kHz. Its fast axis at0◦ and its retardation is modulated according to
the sinusoidal functionδPEM(t) = δ0sin(ωt), whereωp = 2π fp andδ0 is the user-
specified amplitude of PEM maximum retardation. The light finally passes through
a linear analyzer orientated at45◦, converting the PEM-imparted polarization mod-
ulation to an intensity modulation suitable for photodetection. The detected signal is
sent to a lock-in amplifier, with its reference input toggled between the chopper and
PEM frequencies for synchronous detection of their respective signals.

The data analysis proceeds as follows. The Stokes vector that carries the sample-
specific information, is given as (detection quarter wave-plate in place):




I f

Qf

U f

Vf


 =

1
2




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0







1 0 0 0
0 1 0 0
0 0 cosδ sinδ
0 0−sinδ cosδ







1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0







I
Q
U
V


 (17.2)

and when the detection quarter wave-plate is removed as,
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FIGURE 17.1: Schematic of the turbid polarimeter. C, mechanical chopper; P1,
P2, polarizers; WP1, WP2, removable quarter wave plates; A, aperture; L1, L2 lenses;
PEM, photoelastic modulator; D, photodetector;fc, fp modulation frequencies of
mechanical chopper and PEM, respectively. The detection optics can be rotated by
an angleθ around the sample (adapted from reference [5]).




I f r

Qf r

U f r

Vf r


 =

1
2




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0







1 0 0 0
0 1 0 0
0 0 cosδ sinδ
0 0−sinδ cosδ







I
Q
U
V


 (17.3)

The detected intensity signals are thus (q = Q/I , u = U/I , andv = V/I)

I f (t) =
I
2
[1−qsinδ +ucosδ ]; (17.4)

I f r =
I
2
[1−vsinδ +ucosδ ], (17.5)

whereδ = δ (t) = δ0sinωt is the time-varying PEM retardation of user-specified
δ0 magnitude. A time-varying circular function in the argument of another circular
function, as is present in Equations (17.3) and (17.4), can be Fourier expanded in
terms of Bessel functions [13] to yield signals at different harmonics of the funda-
mental modulation frequency. It can be advantageous in terms of SNR to choose the
peak retardance of the PEM such that the zeroth order-Bessel functionJ0 is zero [10];
with this selection ofδ0 = 2.405radians (resulting inJ0(δ0) = 0), Fourier-Bessel ex-
pansion of Eq. (17.4) and (17.5) gives,

I f (t) =
1
2
[1−2J1(δ0)qsinωt +2J2(δ0)ucos2ωt + . . .]; (17.6)

I f r =
1
2
[1−2J1(δ0)vsinωt +2J2(δ0)ucos2ωt + . . .]. (17.7)
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The normalized Stokes parameters of the light scattered by the sample(u,q,v)
can thus be obtained from synchronously-detected lock-in amplifier signals at the
first harmonic of the signal at the chopper frequencyV1 f c (the ‘zeroth’ harmonic, or
the dc signal level), and at the first and second harmonics of the signal at the PEM
frequencyV1 f p andV2 f p respectively. The experimentally measurable waveform in
terms of the detected voltage signal is

V(t) = V1 f c +
√

2V1 f sinωt +
√

2V2 f cos2ωt, (17.8)

which takes into account the rms nature of lock-in detection [5]. Applying Eq. (17.8)
to the set-up with detection waveplate in the analyzer arm (Eq. (17.6)) gives

V1 f c =
I
2

k; (17.9)

√
2V1 f =−IkJ1(δ0)q; (17.10)
√

2V2 f = IkJ2(δ0)u, (17.11)

wherek is an instrumental constant, the same for all equations. The normalized
linear polarization Stokes parametersq andu are then found from

q =
V1 f p√

2J1 (δ0)V1 f c
; (17.12)

u =
V2 f p√

2J2 (δo)V1 f c
. (17.13)

Comparing Eqs. (17.8) and (17.7) when the detection quarter wave plate is re-
moved yields

V1 f c =
I
2

k; (17.14)

√
2V1 f =−IkJ1(δ0)v, (17.15)

and the circular polarization Stokes parameterv is then found from,

v =
V1 f p√

2J1 (δo)V1 f c
. (17.16)

The negative signs in Eqs. (17.10) and (17.15) are dropped in the final equations
as positive voltages are measured; instead, the sign of the Stokes parameters is de-
termined from the lock-in amplifier phase of the detected signals.

The measured Stokes parameters thus obtained allow for complete characteriza-
tion of the polarization of the light exiting the sample. The orientation of the plane
of linear polarizationγ can be calculated as,

γ = tan−1
(

u
q

)
. (17.17)
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Based on the known input plane of the incident linear polarizationγi , the optical
rotation produced by the sample can be calculated as

α = γ− γi . (17.18)

The optical rotation can be related the concentration of optically active constituents,
for example through the simple relationshipα = R·C · 〈L〉 of Eq. (17.1), however,
in the case of scattering media such as tissue, the ambiguity of the average optical
pathlength〈L〉 may necessitate more complex analysis (section 17.5).

Measured glucose-induced optical rotation in scattering phantoms (1.4µm di-
ameter polystyrene microspheres in water, resulting scattering coefficient ofµs =
28 cm−1 as calculated from Mie theory) with added glucose concentrations down to
physiological levels (5 to 10 mM) are shown in Fig. 17.2. These measurements were
performed in the forward direction (θ = 0◦ in Fig. 17.1) through 1 cm of scattering
material (1cm×1cm× 4cm quartz cuvette containing the turbid chiral suspensions).
A moderate scattering level was selected (∼1/3 of biological tissue in the visible-
near IR range [14]), as depolarization in the forward direction through thick samples
(1 cm in this case) is quite severe, limiting the accuracy with which small optical rota-
tion values due to small glucose levels can be accurately measured. While the degree
of surviving polarization, and thus the accuracy of optical rotation determination, can
be greater at other detection directionsθ , the contribution of scattering-induced opti-
cal rotation can also be greater, masking the small chirality-induced optical rotation
due to glucose (see section 17.5). The ways to decouple these glucose-induced and
scattering-induced polarization effects, and various trade-offs associated with opti-
mum detection geometry, are discussed elsewhere in this chapter. Nevertheless, the
results in Fig.17.2 demonstrate the potential for measuring very small optical rota-
tions (milli-degree levels) in turbid media using the sensitive polarization modulation
/ synchronous lock-in detection experimental platform.

Measurements of glucose induced optical rotation (1.2 M glucose concentration)
as a function of the scattering coefficient are shown in Fig. 17.3. As in Fig.17.2,
these measurements were performed in the forward direction through a similar quartz
cuvette. The optical rotation increases with increasing scattering due to the increase
in average optical pathlength (〈L〉 in Eq. (17.1)) produced with additional scattering
events. However, the optical rotation begins to plateau and eventually decrease as
the medium becomes highly scattering (µs > 40 cm−1). This is due to the eventual
depolarization caused by multiple scattering. The light that has lost its polarization
no longer contributes to the net optical rotation and as a result there is a reduction in
optical rotation. The implication to glucose monitoring is that measurement sites and
geometries must be chosen such that a reasonably large portion of the light remains
polarized to contribute to the net optical rotation. In addition, as discussed later
(section 17.5), the measurement geometry also plays a large role in the scattering-
induced optical rotation which must also be taken into account.

Although the Stokes vector description can yield sample-specific information as
above, the measured and derived results also depend on the state of the input light
(as evident from the basic mathematical set-up of the problem,Ssample= Msample·
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FIGURE 17.2: Logarithmic plot of optical rotation as a function of glucose con-
centration in scattering media (1.4µm diameter polystyrene microspheres in water,
µs∼28 cm−1) down to physiological glucose levels. Measurements were performed
in the forward direction (θ = 0◦) through 1 cm of turbid media in a quartz cuvette
(adapted from [6]).

Sinput). Arguably a more ‘intrinsic’ descriptor of sample properties, independent
of the input polarization state and representing the true sample polarization transfer
function, is its Mueller matrixM . Fortunately, the described PEM-based experi-
mental platform can also perform sensitive Mueller polarimetry, by measuring the
output Stokes vectors for four incident polarization states: input linearly polarized
light at 0◦, 45◦, and90◦, and input circularly polarized light. The four input states
are denoted with the subscriptsH (horizontal),P (45◦), V (vertical), andR (r ight cir-
cularly polarized, although left incidence can be used as well, resulting only in a sign
change). The elements of the resulting 4 measured Stokes vectors can be combined
to yield the sample Mueller matrix as,

M(i, j) =




1
2(IH + IV) 1

2(IH − IV) IP−M(1,1) IR−M(1,1)

1
2(QH +QV) 1

2(QH −QV) QP−M(2,1) QR−M(2,1)

1
2(UH +UV) 1

2(UH −UV) UP−M(3,1) UR−M(3,1)

1
2(VH +VV) 1

2(VH −VV) VP−M(4,1) VR−M(4,1)




(17.19)

where the indicesi, j = 1,2,3,4 denote rows and columns respectively. As will be
described later, the measured Mueller matrix can also be used to quantify the optical
rotation produced by a sample, which can be related to the concentration of optically
active molecules such as glucose.
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FIGURE 17.3: Measured optical rotation with 1.2 M glucose as a function of scat-
tering coefficient (1.4µm diameter microspheres) in the forward direction (θ = 0◦ )
through 1 cm of turbid media contained in a quartz cuvette (adapted from [15]).

In summary, the described experimental approach based on polarization modu-
lation and synchronous detection is suitable for sensitive polarimetric detection in
turbid media. Several fundamental studies of turbid chiral polarimetry have been
published [5–10, 15]. Continuing experimental improvements to maximize detec-
tion sensitivity to small glucose levels, such as the use of balanced detection, ge-
ometrical optimization, and spectroscopic extension are ongoing. We now turn to
the equally challenging problems of accurately modeling the polarization signals in
turbid media, both in theforward (section 17.3) andinverse senses (section 17.4).

17.3 Polarimetry in turbid media: accurate forward modeling
using the Monte Carlo approach

To aid in the investigation of polarimetry-based glucose monitoring in biologi-
cal tissue, accurateforward modeling is enormously useful for gaining physical
insight, designing and optimizing experiments, and analyzing / interpreting the mea-
sured data. The glucose polarimetry modeling is particularly formidable, as there
are several complex polarization effects occurring in tissue simultaneously, and the
potential for losing the small glucose-induced polarization signal, or misinterpret-
ing it, is high. The use of electromagnetic theory with Maxwell’s equations is the
most rigorous and best-suited method for polarimetry analysis, at least in clear me-
dia with well-defined optical interfaces; however, due to the ensuing complexity, the
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Maxwell’s equations approach for polarized light propagation in turbid media is im-
practical in most circumstances [16]. Instead, light propagation through multiply
scattering media is often modelled through transport theory; however, transport the-
ory and its simplified variant, the diffusion equation, are both intensity-based tech-
niques, and hence typically neglect polarization [17, 18]. A more general and robust
approach is the Monte Carlo (MC) technique, with its advantage of applicability to
arbitrary geometries and arbitrary optical properties. The first Monte Carlo models
were also developed for intensity calculations only and neglected polarization, the
most commonly used being the share-ware code of Wanget al. [19]. More recently,
a number of implementations have incorporated polarization into their Monte Carlo
models by keeping track of the Stokes vectors of propagating photon packets [15,
20–25].

In polarization-sensitive Monte Carlo modelling, it is assumed that scattering
events occur independently of each other and have no coherence effects. The po-
sition, propagation direction, and polarization of each photon are initialized and
modified as the photon propagates through the sample. The photon’s polarization,
with respect to a set of arbitrary orthonormal axes defining its reference frame, is
represented as a Stokes vectorS and polarization effects are applied using medium
Mueller matricesM . The photon propagates in the sample between scattering events
a distance sampled from the probability distributionexp(−µtd), where the extinc-
tion coefficientµt is the sum of the absorptionµa and scatteringµs coefficients
andd is the distance travelled by the photon between scattering events. Upon en-
countering a scattering event, a scattering plane and angle are statistically sampled
based on the polarization state of the photon and the Mueller matrix of the scat-
terer. The photon’s reference frame is first expressed in the scattering plane and
then transformed to the laboratory (experimentally observable) frame through mul-
tiplication by a Mueller matrix calculated through Mie scattering theory [26]. Upon
encountering an interface (either an internal one, representing tissue domains of dif-
ferent optical properties, or an external one, representing external tissue boundary),
the probability of either reflection or transmission is calculated using Fresnel coef-
ficients [15]. As no interference effects are considered, the final Stokes vector for
light exiting the sample in a particular direction are computed as the sum of all the
appropriate directional photon sub-populations. Various quantities of interest such
as detected intensities, polarization (Stokes vectors) properties, average pathlengths,
and so forth, can be quantified once sufficient number of photon (packets) have been
followed and tracked to generate statistically acceptable results (typically107−−109

photons) [15]. We and others have performed a number of Monte Carlo simulation
studies to gain insight into the behavior of polarized light in tissues and tissue-like
media [15, 20–25, 27].

However, most current Monte Carlo models for polarized light propagation do not
fully simulate all of the polarization-influencing effects of tissue. This is because
modelingsimultaneouspolarization effects is difficult, especially in the presence of
multiple scattering. Yet in biological tissue, effects such as optical activity due to chi-
ral molecules (e.g., glucose and proteins) and linear birefringence due to anisotropic
tissue structures (e.g., collagen, elastin, and muscle fibers), must be incorporated into
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the model in the presence of scattering. This is particularly important in glucose po-
larimetry, as many tissues at accessible anatomical sites (finger, lip, ear lobe) exhibit
anisotropic structures manifesting itself as linear birefringence (also known as linear
retardance). Fortunately, there exits a method to simulate simultaneous polarization
effect in clear media through the so-called N-matrix formalism, and applying this
approach in tissue-like mediabetweenscattering events can yield an accurate Monte
Carlo tissue polarimetry model [27].

Briefly, the Mueller matrices for linear birefringence and optical activity are known
and can correctly model these effects individually; the problem arises in applying the
combined effect when both are exhibited simultaneously, especially in the presence
of scattering by the sample. Matrix multiplication is in generalnot commutative,
thus different orders in which these effects are applied will have different effects on
the polarization. Ordered multiplication in fact does not make physical sense, as
these occur simultaneously and not one after the other as sequential multiplication
implies. This necessitates the combination of the effects into a single matrix describ-
ing them simultaneously. The N-matrix algorithm was first developed by Jones [28],
however, a more thorough derivation is provided in Kligeret al. [29]. The issue
of non-commutative matrices is overcome by representing the matrix of the sample
as an exponential function of a sum of matrices, where each matrix in the sum cor-
responds to a single optical polarization effect. This overcomes the ordering issue,
as matrix addition (summation) is always commutative, and applies to differential
matrices representing the optical property over an infinitely small optical pathlength.
Derived from their parent matrices, these are known as N-matrices. The differential
N-matrices corresponding to each optical property exhibited by the sample can then
be summed to express the combined effect. The formalism is expressed in terms
of 2×2 Jones matrices applicable to clear non-depolarizing media, rather than the
more commonly used4×4 Mueller matrices previously discussed. However, a Jones
matrix can be converted to a Mueller matrix, provided there are no depolarization ef-
fects, as described in Schellman and Jensen [30]. This is indeed applicable to our
Monte Carlo model, as depolarization is caused by the (multiple) scattering events,
and no depolarization effects occurbetweenthe scattering events.

Results from validation experiments are shown in Fig. 17.4, where measurements
from phantoms with controllable scattering, linear birefringence, and optical activity
were used to test the developed model [27]. The plot shows the change in the normal-
ized Stokes parameterq= Q/I with increasing birefringence, measured in phantoms
and calculated from the MC model in the forward direction of a1×1×1cm3 sample
with input circularly polarized light. Good agreement between the developed Monte
Carlo model and controlled experimental results is seen. As the input light is trans-
ferred from circular to linear polarization due to the increasing sample birefringence
(the sample in effect acting like a turbid wave-plate), optical rotation due to optical
activity of dissolved sugar (the use of sucrose instead of glucose was dictated by ex-
perimental considerations of sample preparation) is seen as an increase in parameter
q. No such effect is seen in the absence of chirality. While these validation experi-
ments were carried out with much higher levels of optical activity than those present
physiologically, the model can be used to simulate physiologically relevant levels as
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FIGURE 17.4: Experimental measurements (squares) and Monte Carlo calcula-
tions (lines) of the change in the normalized Stokes parameterq with and with-
out optical activity (dotted lines and circles) in the forward (θ = 0◦) detection ge-
ometry with input circularly polarized light and a fixed scattering coefficient of
µs = 60 cm−1. Birefringence was varied fromδ = 0 to 1.4364 rad (∆n = 0 to
1.628× 10−5) and the magnitude of optical activity wasχ = 1.965◦ cm−1, corre-
sponding to a 1 M sucrose concentration. Refractive index matching effects have
been ignored in the MC simulations (adapted from reference [27]).

discussed in the spectral chemometrics section (section 17.6). Lower levels of op-
tical activity can be handled with noise reduction methods such as smoothening or
interpolating, to deal with statistical noise due to discrete nature of the Monte Carlo
model.

Figure 17.5 plots the Monte Carlo calculated normalized Stokes parameters with
fixed optical activity and increasing birefringence similar to Fig. 17.4, except now
that several levels of glucose are now simulated (0 M, 1 M, and 10 M). As we are
interested in the optical activity-induced effects of glucose only, the glucose-induced
refractive index matching effects [7] have been ignored in these MC simulations.
Similar to the previous results, the sample was a1× 1× 1 cm3 cube and the in-
put light was circularly polarized. The large magnitude birefringence effects on the
parametersu andv are quite evident due to the transfer from the input linear to circu-
larly polarized light; however, the optical activity induced effects are small and only
evident for the parameterq. The simulated levels of birefringence (0 to 1.5 rad) are
actually somewhat lower than those present in most tissue [27]; however, the levels
of glucose are several orders of magnitude higher than that present in biological tis-
sue. The glucose effects on the resulting Stokes parameters for this geometry and
sample properties are not large.

To conclude the forward-modeling section, we have described and validated a
comprehensive polarization-sensitive Monte Carlo model capable of simulating com-
plex tissue polarimetry effects, including simultaneous optical activity and birefrin-



482 Glucose optical sensing and impact

FIGURE 17.5: Monte Carlo calculations with optical activityχ = 0◦ cm−1

(dashed lines),χ = 0.8194◦ cm−1 (solid lines), andχ = 8.194◦ cm−1 (dotted lines)
corresponding to 0 M, 1 M, and 10 M glucose concentrations respectively. The
normalized Stokes parameters are plotted in the forward detection geometry with
input circularly polarized light and a fixed scattering coefficient of 60 cm−1 for
all glucose concentrations. Birefringence is varied fromδ = 0 to 1.4364 rad
(∆n = 0 to 1.628× 10−5). Only a small chirality-induced change inq is apparent.
Glucose-induced refractive index matching effects have been ignored in the MC sim-
ulations (adapted from reference [27]).

gence in the presence of scattering. The refinement and use of this model is ongoing,
specifically as applied to the glucose detection problem, viz. detection geometry op-
timization, pathlength / sampling volume quantification, and evaluation of spectral
polarimetry. Some of these studies are described subsequently.



Towards noninvasive glucose sensing using polarization 483

17.4 Tackling the inverse problem: polar decomposition of the
lumped Mueller matrix to extract individual polarization
contributions

Having established the ability to accurately measure and model turbid polarimetry
signals in theforward sense, we now turn to the complicatedinverseproblem of sep-
arating out the constituent contributions from simultaneous optical effects. That is,
given a particular Mueller matrix obtained from an unknown complex system such
as biological tissue with some glucose level, can it be analyzed to extract constituent
polarization contributions? This is a formidable task because when many optical
polarization effects are simultaneously occurring in the sample (as is the case for
biological tissue that often exhibit depolarization, linear birefringence and optical
activity), the resulting elements of the net Mueller matrix reflect several ‘lumped’
effects, thus hindering their unique interpretation. Mueller matrix decomposition
methodology that enables the extraction of the individual intrinsic polarimetry char-
acteristics may be used to address this problem [31]. Preliminary results on the use
of this approach for extraction of the component of optical rotation arising purely due
to circular birefringence (caused by glucose and other optically active molecules) by
decoupling the other confounding effects in a complex turbid medium are encourag-
ing, as summarized in this section.

Polar decomposition of an arbitrary Mueller matrixM into the product of three
elementary matrices representing a depolarizer (M∆), a retarder (MR) and a diatten-
uator (MD) can be accomplished via [31]

M = M∆ ·MR ·MD. (17.20)

The validity of this decomposition procedure was first demonstrated in optically
clearmedia by Lu and Chipman [31]. As mentioned before in the context of forward
modelling with the N-matrix approach, matrix multiplication is generally not com-
mutative; thus the order of these elementary matrices is important. It has been shown
previously that the order selected in Eq. (17.20) always produces a physically real-
izable Mueller matrix; it is thus favorable to use this order of decomposition when
nothing is knowna priori about an experimental Mueller matrix [32].

The three basis Mueller matrices thus determined can then be further analyzed
to yield a wealth of independent constituent polarization parameters. Specifically,
diattenuation (D, differential attenuation of orthogonal polarizations for both linear
and circular polarization states), depolarization coefficient (∆, linear and circular),
linear retardance (δ , difference in phase between two orthogonal linear polarization,
and its orientation angleΘ), and circular retardance or optical rotation (ψ, difference
in phase between right and left circularly polarized light), can be determined from
the decomposed basis matrices [31,33].

Proceeding as outlined above, the magnitude of diattenuation (D) can be deter-
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mined as

D = {1/MD(1,1)}× [{MD(1,2)}2 +{MD(1,3)}2 +{MD(1,4)}2]1/2. (17.21)

HereM(i, j) are the elements of the4× 4 Mueller matrixM . The coefficients
MD(1,2) andMD(1,3) represents linear diattenuation for horizontal (vertical) and
+45◦ (-45◦) linear polarization respectively, and the coefficientMD(1,4) represents
circular diattenuation.

Turning to depolarization, the diagonal elements of the decomposed matrixM∆
can be used to calculate the depolarization coefficients (M∆(2,2), M∆(3,3) are depo-
larization coefficients for incident horizontal (or vertical) and45◦ (or−45◦) linearly
polarized light, andM∆(4,4) is the depolarization coefficient for incident circularly
polarized light]. The net depolarization coefficient∆ is defined as

∆ = 1−|Tr M∆−1|/3. (17.22)

Note that this definition of depolarization coefficient is different from the con-
ventional Stokes parameter-based definition of degree of polarization(Q2 +U2 +
V2)1/2/I . The later represents the value of degree of polarization resulting from sev-
eral lumped polarization effects, and also depend on the incident Stokes vector. In
contrast, the depolarization coefficient (∆) defined by Eq. (17.22) represents the pure
depolarizing transfer function of the medium.

Finally, the following analysis can be performed on the retardance matrixMR.
This matrix can be further expressed as a combination of a matrix for a linear re-
tarder (having a magnitude of linear retardanceδ , its retardance axis at angleΘ with
respect to the horizontal) and a circular retarder (optical rotation with magnitude of
ψ) [33]. Using the known functional form of the linear retardance and optical ro-
tation matrices, the values for optical rotationψ ) and linear retardanceδ can be
determined from the elements of the matrixMR as [33]

ψ = tan−1{[MR(3,2)−MR(2,3)]/[MR(3,2)−MR(2,3)]}; (17.23)

δ = cos−1{[(MR(2,2)+MR(3,3)2 +(MR(3,2)+MR(2,3)2]1/2−1}. (17.24)

Note that there are important differences between the optical rotationψ defined
through Eq. (17.23) and the rotation of the Stokes linear polarization vectorα de-
fined through Eqs. (17.17) and (17.18) of section 17.2. The parameterα represents
the net change in the orientation angle of the linear polarization vector. In addition
to rotation due to circular birefringence, this may also have contributions from sev-
eral other confounding factors like the scattering induced rotation and the rotation
of the polarization ellipse resulting from linear birefringence and its orientation. In
contrast, the parameterψ represents the component of optical rotation that is purely
due to the circular birefringence property of the medium (introduced by the presence
of chiral substances such as glucose).

The validity of the matrix decomposition approach summarized in Eqs. (17.20)–
(17.24) in complex turbid media was tested with both experimental (section 17.2)
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FIGURE 17.6: The experimentally recorded Mueller matrix and the decomposed
matrices for a birefringent (extension = 4 mm), chiral (concentration of sucrose =
1 M), turbid (µs = 30 cm−1, g = 0.95) phantom. The Mueller matrix was measured
in the forward direction through the 1 cm thickness.

and MC-simulated (section 17.3) Mueller matrices, whose constituent properties are
known and user-controlleda priori.

In the experimental studies, a PEM-based polarimeter [5, 27] (section 17.2) was
used to record Mueller matrices in the forward detection geometry (sample thick-
ness 1 cm, detection area of 1 mm2 and an acceptance angle∼ 18◦ around the
forward directed ballistic beam were used) from polyacrylamide phantoms having
strain-induced linear birefringence, sucrose-induced optical activity, and polystyrene
microspheres-induced scattering. The Mueller matrix was generated using standard
relationships between its sixteen elements and the measured output Stokes parame-
ters[I Q U V] for each of the four input polarization states (Eq. (17.19)) [34, 35].

Figure 17.6 shows the experimentally recorded Mueller matrix and the corre-
sponding decomposed depolarization (M∆), retardance (MR) and diattenuation (MD)
matrices. These results are from a solid polyacrylomide phantom that mimics the
complexity of biological tissues, in that it exhibits birefringence (extension 4 mm for
strain applied along the vertical direction), chirality (concentration of 1 M of sucrose
corresponding to magnitude of optical activity per unit length ofχ = 1.965◦ cm−1

was used here instead of glucose for practical reasons of phantom construction), and
turbidity (1.4µm diameter polystyrene microspheres in water, resulting in a scatter-
ing coefficient ofµs = 30 cm−1 and anisotropy parameterg = 0.95). The measure-
ment was performed in the forward direction (θ = 0◦) through a 1 cm×1 cm×4 cm
phantom. Note the complicated nature of the lumped Mueller matrix and the rela-
tively unequivocal nature of the three basis matrices derived from the decomposition
process. Eqs. (17.21)–(17.24) were then applied on the decomposed basis matrices
to retrieve the individual polarization parameters (diattenuationD, linear retardance
δ , optical rotationψ and depolarization coefficient∆). The determined values for
these are listed in Table 17.1.
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TABLE 17.1: Comparison of the polarization parameters derived via
Eqs. (17.21)–(17.24) under the same conditions as in Fig. 17.6

Parameters Estimated value
(from M∆, MR, MD)

Expected value

D 0.032 0
δ 1.384 rad 1.345 rad
ψ 2.04◦ 2.07◦
∆ 0.790 0.806

The comparison of the derived and the input control values for the polarization
parameters reveals several interesting trends. The expected value for diattenuation
D is zero, whereas the decomposition method yields a small but non-zero value of
D = 0.034. Scattering induced diattenuation that arises primarily from singly (or
weakly) scattered photons [33], is not expected to contribute to the non-zero value
for D because multiply scattered photons are the dominant contributor to the detected
photons in the forward detection geometry. Presence of small amount of dichroic ab-
sorption (at the wavelength of excitationλ = 632.8 nm) due to anisotropic alignment
of the polymer molecules in the polyacrylamide phantom may possibly contribute to
this slight non-zero value for the parameterD.

The agreement in the linear retardance value of this turbid phantom (δ = 1.384rad)
and that for a clear (µs = 0 cm−1, extension = 4 mm) phantom (δ=1.345 rad) is quite
reasonable. The Mueller-matrix derived value of optical rotationψ = 2.04◦ of the
turbid phantom was, however, slightly larger than the corresponding value measured
from a clear phantom having the same concentration of sucrose (ψ0 = 1.77◦). This
small increase in theψ value in the presence of turbidity is likely due to an increase in
optical pathlength engendered by multiple scattering. Indeed, the value forψ, calcu-
lated using the optical rotation value for the clear phantom (ψ0 = 1.77◦) and the value
for average photon pathlength (〈L〉 = 1.17 cm, determined from Monte Carlo sim-
ulations, see section 17.5)ψ = ψ0 〈L〉 = 2.07◦ was reasonably close to the Mueller
matrix derived value (ψ = 2.04◦). To account for the contraction of the phantom due
to longitudinal stretching, the thickness of the scattering medium was taken to be
0.967 cm (reduction in thickness at 4 mm extension using the Poisson ratio∼ 0.33
of polyacrylamide [36]) instead of 1 cm for the calculation of average photon path-
length. The overall slight lower experimental optical rotation values of the phantoms
as compared to that expected for concentration of sucrose of 1 M (the experimental
value ofψ0 = 1.77◦ for the clear phantom as compared toψ0 = χ L = 1.90◦, ex-
pected for path length ofL = 0.967 cm andχ = 1.965◦ cm−1) possibly arises due
to an uncertainty in the concentration of sucrose during the process of fabrication of
the phantom.

Finally, the calculated decomposition value of total depolarization of∆ = 0.79
seems reasonable, although this is harder to compare with theory (there is no di-
rect link between the scattering coefficient and resultant depolarization). The value
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shown in the theoretical comparison column of the Table was determined from the
Monte Carlo simulation as described in the previous section. The resultant agree-
ment in the depolarization values is excellent. It is worth noting that decomposition
results for an analogous purely depolarizing phantom (same turbidity, no birefrin-
gence nor chirality, results not shown) were within 2% of the above∆ values. This
self-consistency implies that decomposition process successfully decouples the de-
polarization effects due to multiple scattering from optical rotation and retardation
effects, thus yielding accurate and quantifiable estimates of theδ andψ parameters
in the presence of turbidity.

In order to gain additional quantitative understanding of the dependence of the
estimated value for optical rotationψ on the propagation path of multiply scattered
photons, Mueller matrices were generated using Monte Carlo simulations for trans-
mitted light (1 cm thick sample as before), collected at different spatial positions at
the distal face of the scattering medium. Decomposition analysis was then performed
on these Monte Carlo generated Mueller matrices. Figure 17.7 displays the variation
of the parameterψ of transmitted light as a function of distance from ballistic beam
position at the distal face of a birefringent (linear retardance ofδ = 1.35 radian for
optical pathlength of 1 cm) turbid medium (µs = 30 cm−1, g = 0.95). The axis of
linear birefringence was kept along the vertical direction (Θ = 90◦) in the simula-
tions and the different spatial positions were perpendicular to the direction of the
axis of linear birefringence. The results are shown for two different values of opti-
cal activity (χ = 0.0820and 0.1640◦ cm−1, corresponding to 100 mM and 200 mM
concentration of glucose, respectively).

As one would expect, the Mueller-matrix derived values forψ increase with in-
creasing average photon pathlength and the values are also reasonably close to those
calculated using the linear relationship (ψ = χ × average photon pathlength). Note
that the average path length has contributions from both the polarization preserving
and the depolarized photons. The fact that the propagation path of the polarization
preserving photons (which would show experimentally detectable optical rotation)
are shorter than the average photon path length of light exiting the scattering medium
[37], should account for the slightly lower value for the Mueller-matrix derivedψ
(particularly at larger off-axis distances).

The results of the experimental studies on phantoms having varying optical prop-
erties and the corresponding results of Monte Carlo generated Mueller matrices
demonstrate that decomposition of Mueller matrix can be used for simultaneous de-
termination of the intrinsic values for optical rotation (ψ) and linear retardance (δ )
of a birefringent, chiral, turbid medium. For conceptual and practical reasons, the
extension of this methodology to backward detection geometry is warranted. This
work is currently ongoing in our laboratory.

To summarize, we have described a theoretical approach for solving the inverse
problem in turbid polarimetry. The Mueller matrix decomposition methodology al-
lows the extraction of the individual intrinsic polarimetry characteristics from the
lumped Mueller matrix description of a complex turbid medium. Experimental and
theoretical studies in complex tissue-like media for extracting the intrinsic value for
optical rotation (which is related to the concentration of chiral molecules such as
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FIGURE 17.7: Variation of optical rotation parameterψ of transmitted light as a
function of distance from ballistic beam position at the distal face of a 1-cm-thick
birefringent (δ = 1.35 radian for optical pathlength of 1 cm) turbid (µs = 30 cm−1,
g = 0.95) medium. The results are shown for two different values of optical activ-
ity (χ = 0.0820and 0.1640◦cm−1, corresponding to glucose concentrations of 100
and 200 mM, respectively). The open symbols are theψ values estimated from the
decomposition of Monte Carlo generated Mueller matrices; the solid symbols were
calcultead viaψ = χ × average photon pathlength. The inset shows the MC cal-
culated average photon pathlength as a function of the off-axis distance (see section
17.5).

glucose) yielded very promising results. This bodes well for the potential applica-
tion of this methodology for quantification of the small optical rotations due to blood
glucose in diabetic patients, but this remains to be rigorously investigated. Further
refinements of the highly sensitive Mueller matrix measurement set-up capable of
detecting small changes in the matrix elements corresponding to the physiological
glucose levels, and selection/optimization of the measurement geometry will be re-
quired. It is also pertinent to note that determination of the concentration of glu-
cose using the measured optical rotation from a multiply scattering medium like
tissue would require additional quantitative information on the pathlength distribu-
tions of polarization preserving and depolarized photon populations. Further, the
use of single-wavelength measurements is unlikely to yield unequivocal results in
real tissues, and the use of multi-spectral / spectroscopic turbid polarimetry will be
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essential. The following two sections attempt to address some of these challenges.

17.5 Monte Carlo modeling results for measurement geometry,
optical pathlength, detection depth, and sampling volume
quantification

One of the many advantages of a comprehensive forward model of polarized light-
biological tissue interaction (section 17.3) is the ability to explorein silico the wide
parameter space potentially available for polarimetric tissue measurements, in an ef-
fort to determine optimum geometry for glucose sensing. Another is the ability to
quantify and interpret the measured parameters by examining the sampling volume
probed by light, and determining the average light pathlength in interrogated tissues.
In this section, we present representative results from Monte Carlo studies and se-
lected experimental measurements that address these issues [37–39].

Unlike the previous square/rectangular sample geometries examined to date, a
cylindrical tissue model is used here. This geometry is of special relevance because
the curved surfaces of human anatomy such as finger or lip are of interest in optical
glucose sensing. Further, sites like the finger offer the potential geometric advantage
of multiple-direction detection capability (0◦ to 360◦, compared with0◦ and180◦
detections for slab-like structures and180◦-only detection for semi-infinite set-ups),
and may also be more practical and convenient in a clinical setting. Fortunately, the
inherent flexibility of the Monte Carlo modeling platform makes the simulations of
any arbitrary sample geometry equally accessible.

Utilizing the cylindrical model, the effects of detection direction on the polari-
metric signal, and specifically its influence on glucose-induced optical rotation, have
been investigated. Monte Carlo predictions were validated/confirmed with selected
experimental measurements. For the results reported below, turbid chiral samples in
the absence of birefringence were examined. The modeling geometry shown in Fig.
17.8 mimics the experimental conditions [5, 38]. A 632.8 nm horizontally polarized
beam of 1 mm diameter is incident at the point O on the center of a vertically ori-
entated cylindrical sample of 0.8 cm in diameter and 4 cm in height. The scattered
photons at point P(z,θ ), within acceptance angleφ ∼ 48◦ are collected and focused
onto a detector of∼ 0.7 mm2 sensing area. The detection angle varies from0◦ to
180◦. The vertical position of the surface detection elementz ranges from−4.0 cm
to +4.0 cm, with the signs indicating the relative position with respect to the hor-
izontal incident plane. The samples are highly turbid media (water suspension of
microspheres of different diameter) containing D-glucose, with birefringence val-
ues set to zero. The glucose concentration ranges from 0 mM to 900 mM and the
scattering coefficientµs is varied from 93 cm−1 to 100 cm−1, depending on glucose
levels. The scattering coefficient range is chosen to approximate typical turbidity of
biological tissue. In the simulations, the cylindrical sample is characterized by a set
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FIGURE 17.8: Cylindrical geometry used in the experiments and the Monte Carlo
simulations. Linearly polarized light incidents at the point O on a vertically oriented
cylindrical sample. The scattered light is collected by a small detector element at
the point P (z,θ ) on the surface of the cylinder with an acceptance angleφ . z is the
distance of the detector off the horizontal incident plane (z= 0) andθ is the detection
direction (adapted from reference [37]).

of surface elements that are rectangular on the sides and triangular on the bottom and
top (48 on each of the three surfaces). Additional modeling details can be found in
the original articles [37 -39].

The results indicate the dramatic effects of the detection geometry. In moder-
ately scattering samples (µs∼ 20−60 cm−1), the degree of polarization preserva-
tion decreases as one moves from forward to backward hemisphere (increasingθ ),
although a slight increase is seen as one approaches the exact backscattering direc-
tion (θ = 180◦. However, for tissue-like scattering (µssim100 cm−1), polarization
preservation can become higher when measured at higher detection angles (back-
wards hemisphere). For all cases, the highest polarization preservation was observed
in the incident plane (z = 0). Further, the angular dependence of optical rotation
α is significant as well. Figure 17.9 shows measurement and simulation results for
an achiral (glucose-free) highly scattering sample, where the observableα values
are caused by the scattering process only (and can thus be considered as ‘noise’ in
the context of the glucose detection problem). The effects of moving the detector
off the incident plane is negligible in the forward direction, and very significant at
other detection angles [Fig.17.9(a)]. Fig. 17.9(b) presents the entire modeledα-
response surface in theθ ,z parameter space, indicating the complicated behavior
and the necessity of cautious interpretation of the measuredα values — optical ro-
tation in the presence of multiple scattering is not only caused by the chirality of
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FIGURE 17.9: Optical rotation of light scattered from highly turbid (µs = 100
cm−1) achiral birefringence-free sample. (a) Simulations and measurements atθ =
0◦ and135◦ asz changes from−4 cm to 4 cm. The symbols are experimental data
and the lines are Monte Carlo results. Atθ = 135◦ the optical rotation is seen to
oscillate symmetrically about the incident plane with a large amplitude of∼ 40◦.
This scattering-induced optical rotation is not observable atθ = 0◦ for all examined
z-values. (b)θ–z response surface of optical rotation from the MC simulation with
θ changing from0◦ to 180◦, andz changing from−4 cm to 4 cm. In the absence
of glucose, the scattering-induced optical rotation is minimal (∼ 0) at θ = 0◦ or
θ = 180◦, and everywhere in the incident plane (z = 0) (adapted from reference
[38]).

the glucose molecules as is the case in clear-media glucometry. Note that although
the scattering-induced optical rotation can be as large as40◦, it is not observable
anywhere in the incident plane (z= 0), or in the in the exact forward and backwards
directions (θ = 0◦ and180◦) due to symmetry [Fig.17.9(b)]. These geometries may
thus be preferable for measuring pure glucose-induced optical rotation in the highly
scattering environment, subject to many other considerations (e.g., ease of measure-
ment, degree of polarization preservation).

Figure 17.10 shows the experimental optical rotation results from tissue-like tur-
bid medium in the presence of glucose (see [38] for corresponding Monte Carlo pre-
dictions). The trends in the forward direction in the incident plane (Fig. 17.10(a)) are
similar to those previously observed (Fig. 17.2), although the sample size/shape/scattering
parameters are somewhat different. As one explores the backward hemisphere (θ =
135◦ in 17.10(b)), other effects come into play. The effects of added glucose are
rather modest, even in the incident plane (z = 0), where the interference from the
scattering induced signals was shown to be minimal. Conversely, measuring off the
incident plane (z∼ 3 mm) at this detection angle yields considerable variation in
detectedα values as the glucose concentration is varied. Given the large magnitude
of observed changes, this is probably not caused by the chiral nature of glucose,
but is likely due to the glucose refractive index matching effect [7]. That is, the
glucose-caused changes in the scattering coefficient manifest themselves as large
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FIGURE 17.10: Optical rotation due to changes in glucose concentration in highly
turbid chiral phantoms (µs = 100cm−1 in the absence of glucose, glucose concen-
tration from 0 M to 0.9 M), measured at different detection geometries. (a)θ = 0◦,
z= 0 mm. A significant increase over the baseline level is observed, likely due to
chiral nature of glucose. (b)θ = 135◦, z= 0 mm andz= 3 mm. Optical rotation
varies greatly with glucose concentration atz= 3mm, caused by the glucose-induced
refractive index matching effect; corresponding changes are not easily detectable at
z= 0 mm. The symbols are experimental data and the lines are guides for the eye
(adapted from reference [38]). Confirmatory Monte Carlo results are available in
reference [38].

changes in scattering-induced optical rotation, as measured in this off-incident-plane
backwards-hemisphere detection geometry. This effect may or may not prove useful
as a measurable metric for glucose detection in real tissues, but clearly it must be
taken into consideration in system design and data interpretation. Further studies
also suggest the advantage of backward detection geometries due to better polar-
ization preservation at high levels of (tissue-like) turbidity [38]. Clearly then, the
sensitivity of turbid polarimetric glucose measurement is strongly dependent on de-
tection geometry, and further studies are ongoing to shed additional light on this
complicated issue.

Monte Carlo modeling can also offer some insights on a variety of important ‘hid-
den’ variables inherent in turbid polarimetry. Specifically, the pathlength, the detec-
tion depth, and the sampling volume of tissue-interrogating photons are all crucial for
accurate glucose quantification, in that they are needed to analyze/quantify/interpret
the obtained polarimetry results. However, these quantities are difficult or impossible
to obtain directly from experiments. The complicated zig-zag nature of photon paths
in multiply scattering media necessitates the use of statistical models such as the
Monte Carlo approach. Here we show representative results for pathlength distribu-
tion studies of linearly polarized photons incident onto a cylindrical turbid samples
(µs∼ 100cm−1) [37]. In the simulations, the collected photons are binned based on
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FIGURE 17.11: MC-derived pathlength distribution of photons within the inci-
dent plane (z= 0) at backwards detection angles (θ > 90◦). (a) typical pathlength
distributions of the polarization-maintaining photon subpopulations (hollow sym-
bols) and the whole photon population detected atθ = 135◦ and158◦. The average
pathlength decreases with detection angle and the intensity increases with detection
angle (also seen at other values ofθ , see reference [37]). (b) Angular dependence
of average pathlenghts for both photon populations. The average pathlengths of
polarization-maintaining photons〈L〉p are shorter than the corresponding〈L〉tot of
the total photon field, as quantified in the figure inset (adapted from reference[37]).

the number of scattering events N they experienced within the sample, and their path-
length, polarization states and intensity are extracted from each bin and compared
with the total (N-unresolved) averaged ones. The pathlengths of photons spread out
due to multiple scattering as shown in Fig. 17.11(a). Note the relatively confined
pathlength distributions of polarization-maintaining photons, with their well-defined
upper limit; in contrast, the total photon fields (polarized + depolarized) exhibit a
much broader pathlength distribution without a definite upper limit. It is possible
to calculate the correspondingaveragepathlengths for the polarized (〈L〉p) and total
(〈L〉tot) photon fields, by summing the weighted contribution fromN = 1 to N→ ∞
(in practice, the upper limit ofN was∼ 70 for 〈L〉p, as the surviving polarization
fraction was too low for higherN). The summary results for this sample turbidity
are shown in Fig. 17.11(b). The average pathlength of polarized photons〈L〉p is
seen to be 2–3 times smaller than the average pathlength of all collected photons, the
latter being dominated by the longer traveling photon histories. The strong angular
dependence of both pathlength averages is also evident. Additional simulation re-
sults show that the change in (lowering of) the scattering coefficientµs, as such can
be engendered by the glucose index matching effect, shortens the average photon
pathlengths [37].

We have also estimated the penetration depths and sampling volumes of the po-
larized and depolarized light in cylindrical turbid samples, using these MC-derived
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FIGURE 17.12: Optical sampling volume (the volume formed by the surface of
the partial ellipsoid and the sample wall) and detection depth distribution (top view
of sampling volume) atθ = 135◦. Photons enter the cylindrical sample at O and exit
at P (in the scattering plane,z= 0). (a) total photon population (〈L〉tot = 1.44 cm).
(b) polarized photon subpopulation (〈L〉p = 0.44cm). As seen, the polarized photons
have smaller sampling volume and shallower detection depth than the total photon
population, which is dominated by longer-travel depolarized photons (adapted from
reference [39]).

pathlength distributions [39]. In this approach, the zig-zag photon path is approxi-
mated by two straight-line segments, the length sum of which is equal to the path-
length of the photon. The joint points of all the possible combination of two seg-
ments in the incident plane form an ellipse-shaped detection depth distribution and
an ellipsoid-shaped sampling volume distribution. Not surprisingly, it is found that
the smaller average pathlength of polarization-preserving photon subpopulation re-
sults in shallower penetration depths and smaller sampling volumes than that of
all collected photons in the backward hemisphere. To quantify these trends, Fig.
17.12 shows a particular example of the two sampling volumes at a detection angle
θ = 135◦. As evident from the MC results for pathlength distributions, the detection
depth and sampling volume are also strongly dependent on the detection geome-
try. The implication for glucose detection is that the control of spatial interrogation
extent of light in tissues can be achieved (and quantified) by changing the detec-
tion angle. Small angle detection provides deeper penetrations and larger sampling
volumes, whereas large angle detection (approaching the back-scattering direction
at θ = 180◦) offers near surface and localized information from within the turbid
media. Any changes in glucose concentration which affects the photon pathlengths
will also influence the penetration depths and sampling volumes. In concert with
the polarization preservation and scattering- vs glucose-induced optical rotations re-
sults, such modelling is beginning to be applied for design considerations in a turbid
polarimetry glucose detection system.
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17.6 Combining intensity and polarization information via spec-
troscopic turbid polarimetry with chemometric analysis

Nearly all of the developing optical glucose monitoring techniques measure a sig-
nal caused not only by glucose but also by many other biological constituents. As
a result, the techniques suffer in glucose specificity. The sensitivity is often lacking
as well, as the signal due to glucose is generally much smaller than that due to other
constituents. One method to minimize these limitations is to increase the glucose
signal content via a spectral approach that collects data over a range of wavelengths.
Another possibility is to utilize a dual modality optical methodology that combines
the complementary strengths of the two selected techniques. Specifically, combining
near-infrared (NIR) spectroscopy (see chapters 5, 6, 8 and 10 of this monograph),
arguably the most promising glucose-sensing optical method to date, with spectral
polarization information lends itself well to such hybrid approach, as simultaneous
measurements can be made with a single polarization-sensitive optical system. In ad-
dition to potential experimental convenience and practicality, there is a scientific mo-
tivation for this spectroscopic combination. This combination exploits three optical
effects of glucose: its NIR absorption spectrum as manifest in the NIR spectroscopy,
its optical rotatory dispersion (ORD, also known as optical activity) as manifested in
the polarimetry data, and its refractive index matching effect which can influence the
results of both techniques. The last is the change in the refractive index of the media
with changes in constituent glucose concentrations; this influences the scattering co-
efficient of the tissue [7]. For the initial simulation study described below, only the
first two effects were explored (NIR absorption and ORD); unlike the index matching
effect, these two are potentially specific to glucose. The effects of glucose-induced
refractive index matching will be examined subsequently.

To test the combination of NIR and ORD spectroscopy for glucose concentration
determination, a model of blood plasma containing glucose and plasma proteins was
used to generate intensity and polarization spectra in both clear and scattering media.
The effects of absorption due to water, plasma proteins, and glucose in the visible
and NIR were modeled using experimental data from a number of reports [40–43].
As data for individual plasma protein absorption dispersion could not be found, the
total plasma protein (albumin, globulin, and fibrinogen) absorption was used. Fig-
ure 17.13 (a) shows the resulting absorption coefficientsµa(λ ) per concentration
of analyte and optical pathlength, given as a function of wavelength for water, to-
tal protein, and glucose. Additional details related to water displacements effects
and other subtleties for accurate determination of these spectra can be found in [44].
The similarity of the glucose absorption spectrum with that for the plasma proteins
should be noted, as this leads to difficultly in separating their absorption effects and
corresponding concentrations. The high level of absorption due to water as the wave-
length increases beyond 1400 nm also leads to difficulty as this will greatly reduce
the intensity of the light exiting the sample.

The effects of optical activity due to proteins and glucose in the visible and NIR
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FIGURE 17.13: (a) Absorption spectra of blood plasma proteins and glucose in
the visible and NIR. (b) Optical rotatory dispersion of blood plasma proteins and
glucose as given by Drude’s equation (Eq. (17.25)) in the visible and NIR. The pa-
rameters for the Drude’s equation are: for glucoseA = 1.72×107 andλc = 150nm,
for albuminA = −1.75×107 andλc = 264nm, for globulinA = −1.48×107 and
λc = 211nm, and for fibrinogenA = −1.37×107 andλc = 260nm (adapted from
reference [46]).

were modeled using Drude’s equation,

[α]λ =
A

λ 2−λ 2
c
, (17.25)

where[α]λ is the specific rotation of the molecule in units ofdeg.
g/ml−dm at the wave-

lengthλ , A is constant specific to the molecule, andλc is the center wavelength [22].
The resulting ORD spectra are displayed in Fig. 17.13 (b), with the parameter of the
Drude’s equation for the plasma proteins [44] and glucose [1] shown in the figure
caption. The induced rotations due to proteins and glucose have opposite signs, the
proteins rotate to the left (negative sign) while glucose rotates to the right (positive
sign). From the plot of the Drude’s parameters it is evident that the spectral depen-
dence for glucose and proteins, while having opposite senses of rotation, are very
similar. This leads to difficultly in separating the rotation due to glucose from that
due to proteins.

For clear media, the values forµa(λ ) and α(λ ) can be used to calculate the
Mueller matrix for the sample and the resulting Stokes vector for light after prop-
agating through the sample. For scattering media, the Monte Carlo model (section
17.3) was used to generate spectral values for the output Stokes vectors with the
µa(λ ) andα(λ ) spectral inputs of Fig. 17.13. The turbidity of the medium was
set to beµs = 60 cm−1 (somewhat lower than tissue in order to reduce computa-
tional time), the sample was a1×1×1 cm3 cube, and forward-detection geometry
(θ = 0◦) was simulated. The birefringence value was set to zero for this initial study;
its effects will be investigated later. As generating the full spectrum through Monte
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Carlo simulations is computationally intensive, a lookup table method was found to
be useful. Here, the input values ofµa andα are varied in regular intervals to create
a table from which the spectra of the output Stokes parameters can be generated. The
lookup table also allows for noise reduction, as the data can be smoothed to reduce
statistical noise due to the discrete nature of the model. This is particularly impor-
tant, as the simulated physiological glucose levels are small (3–17 mM), as are the
resulting glucose dependent effects.

As with nearly all of the developing optical techniques, this methodology must
now isolate the glucose-specific contribution from signals (Stokes vectors over many
wavelengths in this case) influenced by many other confounding factors (plasma pro-
teins and water in this case). For the lumped Mueller matrix formulation at a single
wavelength, the polar decomposition method was developed (section 17.4). Here we
explore the use of spectroscopic analysis of Stokes vectors via a chemometric ap-
proach. The field of chemometrics provides a number of well-developed techniques
for analyzing measurements of complex chemical systems, to yield constituent con-
centrations or other properties of interest [45]. Most of these techniques regress one
block of data, such as a set of NIR absorption spectra, to a single sample property of
the sample, such as glucose concentrations, to build a predictive model. In our case,
we wish to regress two blocks of spectroscopic data (NIR intensity signals — ele-
mentI of the Stokes vector and ORD polarization signals—elementsQ andU of the
Stokes vector) to improve the predictive abilities of the chemometric model. This
requires the use of multi-block chemometrics to combine two or more of the data
sets into a single predictive model. For this study, multiblock partial least squares
(MB-PLS) was employed as the regression technique.

The MB-PLS is based on the widely used PLS regression method. In PLS, a
regression relationship is found between a descriptor block or matrix of data (in
our case, a set of intensity or polarization spectra) and a response block or matrix
(in our case, a set of corresponding glucose concentrations). This is achieved by
decomposing both the descriptor and response blocks into so called latent variables
that describe the maximum variance in the data. The regression is calculated based
on how the variances in each block explain each other, in other words finding the
covariance between the blocks. In situations where there is more than one descriptor
block, as in this case where we have intensity and polarization measurements, a
method of combining the information in both descriptor blocks must be used in order
to predict the response block.

In this method the blocks are used to create a single super descriptor block as
shown in Fig. 17.14, which is then regressed to the response block using PLS. The
creation of this super-block involves finding the common information contained in
each of the descriptor blocks, referred to as the “consensus” in the literature. In other
words, the variations in the signals that are common in both descriptor blocks are
identified as the consensus between the two blocks. As each block contains mea-
surements done on the same samples, looking at the common information contained
in each block can provide better predictive ability for analytes that affect both mea-
surement techniques (as those in our plasma model do). For example, glucose (as
well as plasma proteins) influences both the intensity and polarization signals caus-
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FIGURE 17.14: Schematic summarizing how multiblock partial least squares
(MB-PLS) chemometric algorithm combines and regresses the generated spectro-
scopic intensity (I(λ )) and polarization (Q(λ ), U(λ )) data; V(λ ) was not used
for regression calculations as glucose chirality does not effect circular polarization
(adapted from reference [46]).

ing a common variation in both signals, and are identified in the calculation of the
consensus.

Two steps are required in the development of a chemometric model: calibration
and testing. In calibration, often referred to as training, a set of data (both descriptor
and response blocks) is used to create the PLS model. In our case, a set of intensity
and polarization spectra (descriptor blocks) as well as glucose concentrations corre-
sponding to each spectrum (response blocks) were used to calculate the regression
parameters using MB-PLS. Once the model is built in this calibration step, it must
be tested with new data to ensure the validity of the model and assess its predictive
ability. A new set of intensity and polarization spectra along with corresponding
glucose concentrations were generated for the purposes of testing both regression
techniques. The size of both the calibration and testing data sets were 400 spectra
with corresponding glucose concentrations. The predictive ability of the methods
can then be determined by calculating the root mean square error of prediction us-
ing the testing data set, with increasing noise added to both the training and testing
spectra.

Results from predictions in both clear and scattering media are shown in Fig.
17.15. The added noise level in the Stokes vectors were taken to be small, typical
to that attainable with high precision polarimetry system. HereI(λ ) was regressed
individually and then combined withQ(λ ), U(λ ) and regressed using MB-PLS. The
parameterV(λ ) was not included in regression as circularly polarized light is not ef-
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fected by the chirality of glucose. Significant improvement in error can be seen when
the intensity and polarization information are combined in both clear and scattering
media. For clear media a reduction in error of approximately 25% was achieved and
in scattering media a reduction in error of approximately 15% was achieved. The
improvement was somewhat diminished with the addition of scattering to the model
as this effectively reduces the magnitude of the polarization signals due to depolar-
ization.

(A) (b)(a)

FIGURE 17.15: Percent error as a function of simulated noise in (a) clear media
and (b) scattering media forI(λ ) regressed with PLS as well asI(λ ), Q(λ ), and
U(λ ) combined and regressed using MB-PLS. The standard deviation of added noise
differs as the spectra in (a) were calculated directly while those in (b) were generated
with the Monte Carlo model (adapted from reference [46]).

A significant improvement (approximately 15%) in predictive ability is still achie-
ved with the combination of intensity and polarization information from simulated
multiple scattering media. Future work will further investigate the influence of scat-
tering, in an effort to determine up to what level of scattering an improvement is
still realized. As this rather large reduction in improvement has already been ob-
served from clear to a scattering coefficient of 60 cm−1, it would seem unlikely that
predictions with more realistic tissue scattering values (∼ 100 cm−1) will exhibit
significant improvement. However, this is yet to be determined, as smoothing or
other preprocessing steps can be used to reduce the signal noise. The present re-
sults demonstrate the potential for the methodology in clear or moderately scattering
biological media, such as blood plasma or extra-cellular fluid [46].
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17.7 Concluding remarks on the prospect of glucose detection in
optically thick scattering tissues with polarized light

In this chapter, the use of polarized light for tissue assessment has been discussed
in the context of noninvasive glucose detection. Despite the inherent difficulty of po-
larimetric approach for examinations of complex turbid media such as tissue, reliable
measurements and analyses can be performed. A variety of experimental and theo-
retical tools have been developed to maximize measurement sensitivity, interpret the
measurement results, isolate specific polarization contributions, quantify ‘hidden’
important variable such as photon pathlength and sampling volume, and evaluate the
validity of the spectroscopic tissue polarimetry. Specifically, a comprehensive turbid
polarimetry platform had been described, comprising of a highly sensitive experi-
mental system, an accurate forward model that can handle all the complex simul-
taneous polarization effects manifested by biological tissues, and an inverse signal
analysis strategy that can be applied to complex tissue polarimetry data to isolate
specific quantities of interest (such as small optical rotation that can be linked to
glucose concentration).

Illustrative examples from tissue-simulating phantoms of increasing biological
complexity have been presented, with consistent and encouraging results. The appli-
cation of this methodology for glucose detection and quantification in real tissues re-
mains to be investigated, and is currently being initiated in our laboratory. Certainly,
the low physiological glucose levels, the high (and variable) levels of tissue scatter-
ing, the varying levels of tissue optical absorption, the presence of other optically-
active molecules, and the confounding effects of various biological variables (pH,
temperature,etc.) will pose significant challenges to any noninvasive glucose moni-
toring approach, including the one described in this chapter. Nevertheless, the turbid
polarimetry progress to date bodes well for future in-vivo developments. Finally, it
may come to pass that the solution for noninvasive glucose monitoring lies in com-
bining two or more of the methods described in this monograph, judiciously combin-
ing their complementary strengths to overcome the formidable biological complexity
inherent in this important clinical problem.
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